Subscribe to
Posts
Comments

Archive for the 'everythingIsMiscellaneous' Category

[misc] I bet your ontology never thought of this one!

Paul Deschner and I had a fascinating conversation yesterday with Jeffrey Wallman, head of the Tibetan Buddhist Resource Center about perhaps getting his group’s metadata to interoperate with the library metadata we’ve been gathering. The TBRC has a fantastic collection of Tibetan books. So we were talking about the schemas we use — a schema being the set of slots you create for the data you capture. For example, if you’re gathering information about books, you’d have a schema that has slots for title, author, date, publisher, etc. Depending on your needs, you might also include slots for whether there are color illustrations, is the original cover still on it, and has anyone underlined any passages. It turns out that the Tibetan concept of a book is quite a bit different than the West’s, which raises interesting questions about how to capture and express that data in ways that can be useful mashed up.

But it was when we moved on to talking about our author schemas that Jeffrey listed one type of metadata that I would never, ever have thought to include in a schema: reincarnation. It is important for Tibetans to know that Author A is a reincarnation of Author B. And I can see why that would be a crucial bit of information.

So, let this be a lesson: attempts to anticipate all metadata needs are destined to be surprised, sometimes delightfully.

[eim][2b2k] The DSM — never entirely correct

The American Psychiatric Association has approved its new manual of diagnoses — Diagnostic and Statistical Manual of Mental Disorders — after five years of controversy [nytimes].

For example, it has removed Aspberger’s as a diagnosis, lumping it in with autism, but it has split out hoarding from the more general category of obsessive-compulsive disorder. Lumping and splitting are the two most basic activities of cataloguers and indexers. There are theoretical and practical reasons for sometimes lumping things together and sometimes splitting them, but they also characterize personalities. Some of us are lumpers, and some of us are splitters. And all of us are a bit of each at various times.

The DSM runs into the problems faced by all attempts to classify a field. Attempts to come up with a single classification for a complex domain try to impose an impossible order:

First, there is rarely (ever?) universal agreement about how to divvy up a domain. There are genuine disagreements about which principles of organization ought to be used, and how they apply. Then there are the Lumper vs. the Splitter personalities.

Second, there are political and economic motivations for dividing up the world in particular ways.

Third, taxonomies are tools. There is no one right way to divide up the world, just as there is no one way to cut a piece of plywood and no one right thing to say about the world. It depends what you’re trying to do. DSM has conflicting purposes. For one thing, it affects treatment. For example, the NY Times article notes that the change in the classification of bipolar disease “could ‘medicalize’ frequent temper tantrums,” and during the many years in which the DSM classified homosexuality as a syndrome, therapists were encouraged to treat it as a disease. But that’s not all the DSM is for. It also guides insurance payments, and it affects research.

Given this, do we need the DSM? Maybe for insurance purposes. But not as a statement of where nature’s joints are. In fact, it’s not clear to me that we even need it as a single source to define terms for common reference. After all, biologists don’t agree about how to classify species, but that science seems to be doing just fine. The Encyclopedia of Life takes a really useful approach: each species gets a page, but the site provides multiple taxonomies so that biologists don’t have to agree on how to lump and split all the forms of life on the planet.

If we do need a single diagnostic taxonomy, DSM is making progress in its methodology. It has more publicly entered the fray of argument, it has tried to respond to current thinking, and it is now going to be updated continuously, rather than every 5 years. All to the good.

But the rest of its problems are intrinsic to its very existence. We may need it for some purposes, but it is never going to be fully right…because tools are useful, not true.

[eim] [semtechbiz] Viacom’s semantic approach

I’m at the Semantic Technology & Business conference in NYC. Matthew Degel, Senior Vice President and Chief Architect at Viacom Media Networks is talking about “Modeling Media and the Content Supply Chain Using Semantic Technologies.” [NOTE: Liveblogging. Getting things wrong. Mangling words. Missing points. Over- and under-emphasizing the wrong things. Not running a spellpchecker. You are warned!]

Matthew says that the problem is that we’re “drowning in data but starved for information” Tere is a “thirst for asset-centric views.” And of course, Viacom needs to “more deeply integrate how property rights attach to assets.” And everything has to be natively local, all around the world.

Viacom has to model the content supply chain in a holistic way. So, how to structure the data? To answer, they need to know what the questions are. Data always has some structure. The question is how volatile those structures are. [I missed about 5 mins m– had to duck out.]

He shows an asset tree, “relating things that are different yet the same,” with SpongeBob as his example: TV series, characters, the talent, the movie, consumer products, etc. Stations are not allowed to air a commercial with the voice actor behind Spoongey, Tom Kenney, during the showing of the SpongeBob show, so they need to intersect those datasets. Likewise, the video clip you see on your setup box’s guide is separate from, but related to, the original. For doing all this, Viacom is relying on inferences: A prime time version of a Jersey Shore episode, which has had the bad language censored out of it, is a version of the full episode, which is part of the series which has licensing contracts within various geographies, etc. From this Viacom can infer that the censored episode is shown in some geography under some licensing agreements, etc.

“We’ve tried to take a realistic approach to this.” As excited as they are about the promise, “we haven’t dived in with a huge amount of resources.” They’re solving immediate problems. They began by making diagrams of all of the apps and technologies. It was a mess. So, they extracted and encoded into a triplestore all the info in the diagram. Then they overlaid the DR data. [I don’t know what DR stands for. I’m guessing the D stands for Digital, and the R might be Resource]] Further mapping showed that some apps that they weren’t paying much attention to were actually critical to multiple systems. They did an ontology graph as a London Underground map. [By the way, Gombrich has a wonderful history and appreciation of those maps in Art and Representation, I believe.]

What’s worked? They’re focusing on where they’re going, not where they’ve been. This has let them “jettison a lot of intellectual baggage” so that they can model business processes “in a much cleaner and effective way.” Also, OWL has provided a rich modeling language for expressing their Enterprise Information Model.

What hasn’t worked?

  • “The toolsets really aren’t quite there yet.” He says that based on the conversations he’s had to today, he doesn’t think anyone disagrees with him.

  • Also, the modeling tools presume you already know the technology and the approach. Also, the query tools presume you have a user at a keyboard rather than as a backend of a Web service capable of handling sufficient volume. For example, he’d like “Crystal Reports for SPARQL,” as an example of a usable tool.

  • Visualization tools are focused on interactive use. You pick a class and see the relationships, etc. But if you want to see a traditional ERD diagram, you can’t.

  • Also, the modeling tools present a “forward-bias.” E.g., there are tools for turning schemas into ontologies, but not for turning ontologies into a reference model for schema.

Matthew makes some predictions:

  • They will develop into robust tools

  • Semantic tech will enable queries such as “Show me all Madonna interviews where she sings, where the footage has not been previously shown, and where we have the license to distribute it on the Web in Australia in Dec.”

(Here’s a version of the text of a submission I just made to BoingBong through their “Submitterator”)

Harvard University has today put into the public domain (CC0) full bibliographic information about virtually all the 12M works in its 73 libraries. This is (I believe) the largest and most comprehensive such contribution. The metadata, in the standard MARC21 format, is available for bulk download from Harvard. The University also provided the data to the Digital Public Library of America’s prototype platform for programmatic access via an API. The aim is to make rich data about this cultural heritage openly available to the Web ecosystem so that developers can innovate, and so that other sites can draw upon it.

This is part of Harvard’s new Open Metadata policy which is VERY COOL.

Speaking for myself (see disclosure), I think this is a big deal. Library metadata has been jammed up by licenses and fear. Not only does this make accessible a very high percentage of the most consulted library items, I hope it will help break the floodgates.

(Disclosures: 1. I work in the Harvard Library and have been a very minor player in this process. The credit goes to the Harvard Library’s leaders and the Office of Scholarly Communication, who made this happen. Also: Robin Wendler. (next day:) Also, John Palfrey who initiated this entire thing. 2. I am the interim head of the DPLA prototype platform development team. So, yeah, I’m conflicted out the wazoo on this. But my wazoo and all the rest of me is very very happy today.)

Finally, note that Harvard asks that you respect community norms, including attributing the source of the metadata as appropriate. This holds as well for the data that comes from the OCLC, which is a valuable part of this collection.

« Prev